Hyers–Ulam stability of first-order linear differential equations using Aboodh transform
نویسندگان
چکیده
Abstract The main aim of this paper is to investigate various types Ulam stability and Mittag-Leffler linear differential equations first order with constant coefficients using the Aboodh transform method. We also obtain Hyers–Ulam constants these some examples illustrate our results are given.
منابع مشابه
On the stability of linear differential equations of second order
The aim of this paper is to investigate the Hyers-Ulam stability of the linear differential equation$$y''(x)+alpha y'(x)+beta y(x)=f(x)$$in general case, where $yin C^2[a,b],$ $fin C[a,b]$ and $-infty
متن کاملApproximately $n$-order linear differential equations
We prove the generalized Hyers--Ulam stability of $n$-th order linear differential equation of the form $$y^{(n)}+p_{1}(x)y^{(n-1)}+ cdots+p_{n-1}(x)y^{prime}+p_{n}(x)y=f(x),$$ with condition that there exists a non--zero solution of corresponding homogeneous equation. Our main results extend and improve the corresponding results obtained by many authors.
متن کاملA new approach for solving the first-order linear matrix differential equations
Abstract. The main contribution of the current paper is to propose a new effective numerical method for solving the first-order linear matrix differential equations. Properties of the Legendre basis operational matrix of integration together with a collocation method are applied to reduce the problem to a coupled linear matrix equations. Afterwards, an iterative algorithm is examined for solvin...
متن کاملHomotopy Perturbation Method and Aboodh Transform for Solving Nonlinear Partial Differential Equations
Here, a new method called Aboodh transform homotopy perturbation method(ATHPM) is used to solve nonlinear partial dierential equations, we presenta reliable combination of homotopy perturbation method and Aboodh transformto investigate some nonlinear partial dierential equations. The nonlinearterms can be handled by the use of homotopy perturbation method. The resultsshow the eciency of this me...
متن کاملHyers-ulam stability of exact second-order linear differential equations
* Correspondence: baak@hanyang. ac.kr Department of Mathematics, Research Institute for Natural Sciences, Hanyang University, Seoul 133-791, South Korea Full list of author information is available at the end of the article Abstract In this article, we prove the Hyers-Ulam stability of exact second-order linear differential equations. As a consequence, we show the Hyers-Ulam stability of the fo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Inequalities and Applications
سال: 2021
ISSN: ['1025-5834', '1029-242X']
DOI: https://doi.org/10.1186/s13660-021-02670-3